
Eric Benhamou eric.benhamou@dauphine.eu

Remy Belmonte remy.belmonte@dauphine.eu

Masterclass 7

Algorithmic and advanced

Programming in Python

1

Algorithmic and advanced Programming in Python

Outline

1. Introduction to Graph Algorithms

2. Graph Representation

3. Graph Traversals

4. Topological Sort

5. Shortest Path Algorithms: Dystra

2

Algorithmic and advanced Programming in Python

Reminder of the objective of this course

• People often learn about data structures out of context

• But in this course you will learn foundational concepts by building a
real application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in Python

Reminder of previous session

• In Master class 6, we discuss about advanced binary trees

• Question: can you give the name of advanced binary trees and the
main intuitions?

4

Algorithmic and advanced Programming in Python

• In the real world, many problems are represented in terms of objects and
connections between them. For example, in an airline route map, we might be
interested in questions like:

• “What’s the fastest way to go from Paris to New York?”

• “What is the cheapest way to go from Paris to New York?”

• To answer these questions we need information about connections (airline
routes) between objects (towns). Graphs are data structures used for solving these
kinds of problems.

Introduction

5

Algorithmic and advanced Programming in Python

Applications

• As part of this chapter, you will learn several ways to traverse graphs
and how you can do useful things while traversing the graph in some
order.

• We will also talk about shortest paths algorithms and see minimum
spanning trees in LAB, which are used to plan road, telephone and
computer networks and also find applications in clustering and
approximate algorithms.

6

Algorithmic and advanced Programming in Python

Glossary

• Graph: A graph G is simply a way of encoding pairwise relationships
among a set of objects: it consists of a collection V of nodes and a
collection E of edges, each of which “joins” two of the nodes.

• We thus represent an edge e in E as a two-element subset of
V: e = {u, v} for some u, v in V, where we call u and v the ends of e.

• Edges in a graph indicate a symmetric relationship between their ends.
Often we want to encode asymmetric relationships, and for this, we
use the closely related notion of a directed graph.

7

Algorithmic and advanced Programming in Python

Directed Graph

• A directed graph G’ consists of a set of nodes V and a set of directed
edges E’. Each e’ in E’ is an ordered pair (u, v); in other words, the
roles of u and v are not interchangeable, and we call u the tail of the
edge and v the head. We will also say that edge e’ leaves node u and
enters node v.

8

Algorithmic and advanced Programming in Python

Undirected graph

• When we want to emphasize that the graph we are considering is not
directed, we will call it an undirected graph.

• By default, however, the term “graph” will mean an undirected
graph.

• It is also worth mentioning two warnings in our use of graph
terminology.
• First, although an edge e in an undirected graph should properly be written as

a set of nodes {u, u}, one will more often see it written in the notation used for
ordered pairs: e = (u, v).

• Second, a node in a graph is also frequently called a vertex; in this context,
the two words have exactly the same meaning.

9

Algorithmic and advanced Programming in Python

Directed edge

• Vertices and edges are positions and store elements

• Definitions that we use:

• Directed edge:

• Ordered pair of vertices (u,v)

• First vertex u is the origin

• Second vertex v is the destination

• Example: one-way road traffic

10

Algorithmic and advanced Programming in Python

Undirected edge

• Unordered pair of vertices (u,v)

• Example: railway lines

11

Algorithmic and advanced Programming in Python

Directed graph

• All the edges are directed

• Example: route network

12

Algorithmic and advanced Programming in Python

Undirected graph

• All the edges are undirected

• Example: flight network

13

Algorithmic and advanced Programming in Python

Connection with tree

• When an edge connects two vertices, the vertices are said to be
adjacent to each other and the edge is incident on both vertices.

• A graph with no cycles is called a tree. We will define properly a
cycly in a few slides. A tree is an acyclic connected graph.

14

Algorithmic and advanced Programming in Python

Other terms

• A self loop is an edge that connects a vertex to itself.

• Two edges are parallel if they connect the same pair of vertices.

• The degree of a vertex is the number of edges incident on it.

• A subgraph is a subset of a graph’s edges (with associated vertices) that
form a graph.

15

Algorithmic and advanced Programming in Python

Path in undirected graph

• One of the fundamental operations in a graph is that of traversing a
sequence of nodes connected by edges.

• We define a path in an undirected graph G = (V, E) to be a sequence P
of nodes v1, v2 , …, vk -1, vk with the property that each consecutive
pair vi, vi+1 is joined by an edge in G. P is often called a path from v1,
to vk or a v1 - vk path.

• A path is called simple if all its vertices are distinct from one another.

• A cycle is a path v1, v2 , …, vk -1, vk in which k > 2 and the first k-1
nodes are all distinct, and v1 = vk . In other words, the sequence of
nodes “cycles back” to where it began.

16

Algorithmic and advanced Programming in Python

Path in directed graph

• All of these definitions carry over naturally to directed graphs, with
the following change: in a directed path or cycle, each pair of
consecutive nodes has the property that (vi -1, vi) is an edge.

• In other words, the sequence of nodes in the path or cycle must respect
the directionality of edges.

17

Algorithmic and advanced Programming in Python

Visually

• A path in a graph is a sequence of adjacent vertices. Simple path is a
path with no repeated vertices. In the graph below, the dotted lines
represent a path from 𝐺 to 𝐸.

• Question: can you give another path from 𝐺 to 𝐸?

18

Algorithmic and advanced Programming in Python

Cycle

• A cycle is a path where the first and last vertices are the same. A
simple cycle is a cycle with no repeated vertices or edges (except the
first and last vertices).

• Question: can you cite cycles in the graph above?

19

Algorithmic and advanced Programming in Python

Connected graph

• We say that an undirected graph is connected if, for every pair of nodes u
and v, there is a path from u to v. Choosing how to define connectivity of a
directed graph is a bit more subtle, since it’s possible for u to have a path to
v while v has no path to u.

• We say that a directed graph is strongly connected if, for every two nodes u
and v, there is a path from u to v and a path from v to u.

• We say that one vertex is connected to another if there is a path that
contains both of them.

• A graph is connected if there is a path from 𝑒𝑣𝑒𝑟𝑦 vertex to every other
vertex.

• If a graph is not connected then it consists of a set of connected
components.

20

Algorithmic and advanced Programming in Python

Exemple

21

Algorithmic and advanced Programming in Python

DAG

• A 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 𝑔𝑟𝑎𝑝ℎ [DAG] is a directed graph with no cycles.

• In 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ𝑠 integers (𝑤𝑒𝑖𝑔ℎ𝑡𝑠) are assigned to each edge to
represeant (distances or costs).

22

Algorithmic and advanced Programming in Python

Short path

• In addition to simply knowing about the existence of a path between
some pair of nodes u and v, we may also want to know whether there
is a short path. Thus we define the distance between two nodes u and
v to be the minimum number of edges in a u-v path.

• A forest is a disjoint set of trees.

• A spanning tree of a connected graph is a subgraph that contains all of
that graph’s vertices and is a single tree. A spanning forest of a graph
is the union of spanning trees of its connected components.

23

Algorithmic and advanced Programming in Python

Bipartite graph

• A bipartite graph is a graph whose vertices can be divided into two
sets such that all edges connect a vertex in one set with a vertex in the
other set.

24

Algorithmic and advanced Programming in Python

Complete graphs

• Graphs with all edges present are called 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 graphs.

• Graphs with relatively few edges (generally if it edges < |𝑉| log |𝑉|) are
called 𝑠𝑝𝑎𝑟𝑠𝑒 𝑔𝑟𝑎𝑝ℎ𝑠.

• Graphs with relatively few of the possible edges missing are called 𝑑𝑒𝑛𝑠𝑒
graphs.

• Directed weighted graphs are sometimes called 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.

• We will denote the number of vertices in a given graph by |𝑉|, and the
number of edges by |𝐸|. Note that 𝐸 can range anywhere from 0 to

|𝑉| (| 𝑉 | -1)/2, (in undirected graph). This is because each node can

connect to every other node.

25

Algorithmic and advanced Programming in Python

What are the applications of Graphs?

• Question: can you think of applications of Graphs?

26

Algorithmic and advanced Programming in Python

What are the applications of Graphs?

• Representing relationships between components in electronic circuits

• Transportation networks: Highway network, Flight network

• Computer networks: Local area network, Internet, Web

• Databases: For representing ER (Entity Relationship) diagrams in
databases, for representing dependency of tables in databases

• Machine learning (Graphical models)

• Causality representation

• Hidden relationship (Bayesian Graphs… like HMM, Kalman filter,
etc..)

27

Algorithmic and advanced Programming in Python

Graph Representation

• As in other ADTs, to manipulate graphs we need to represent them in
some useful form. There are several ways to represent graphs, each
with its advantages and disadvantages. Some situations, or algorithms
that we want to run with graphs as input, call for one representation,
and others call for a different representation.

• Here, we'll see three ways to represent graphs.

• Adjacency Matrix

• Adjacency List

• Adjacency Set

28

Algorithmic and advanced Programming in Python

Adjacency Matrix

• Graph Declaration for Adjacency Matrix: First, let us look at the
components of the graph data structure. To represent graphs, we need
the number of vertices, the number of edges and also their
interconnections. So, the graph can be declared as:

29

Algorithmic and advanced Programming in Python

Corresponding Code

30

Algorithmic and advanced Programming in Python

Description

• The adjacency matrix of a graph is a square matrix of size 𝑉 × 𝑉. The
𝑉 is the number of vertices of the graph G. The values of matrix are
boolean. Let us assume the matrix is 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥. The value 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖
𝑥[𝑢, 𝑣] is set to 1 if there is an edge from vertex u to vertex v and 0
otherwise. In the matrix, each edge is represented by two bits for
undirected graphs. That means, an edge from u to v is represented by 1
value in both 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥[u, v] and 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥[𝑢, 𝑣]. To save time, we
can process only half of this symmetric matrix. Also, we can assume
that there is an “edge” from each vertex to itself. So, 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥[u, u]
is set to 1 for all vertices.

31

Algorithmic and advanced Programming in Python

• If the graph is a directed graph then we need to mark only one entry in
the adjacency matrix. As an example, consider the directed graph
below.

• The adjacency matrix for this graph can be given as:

Example

32

A B C D

A 0 1 0 1

B 0 0 1 0

C 1.41 0 0 1

D 0 0 0 0

Algorithmic and advanced Programming in Python

Implementation

• Now, let us concentrate on the implementation. To read a graph, one
way is to first read the vertex names and then read pairs of vertex
names (edges). The code below reads an undirected graph.

33

Algorithmic and advanced Programming in Python

Code

34

Algorithmic and advanced Programming in Python

Code follows

35

Algorithmic and advanced Programming in Python

Code follows

36

Algorithmic and advanced Programming in Python

Code follows

37

• Question: What is the output?

Algorithmic and advanced Programming in Python

Output

38

Algorithmic and advanced Programming in Python

When to choose adjacency matrix representation?

• Question: when is the adjacency matrix representation good?

39

Algorithmic and advanced Programming in Python

When to choose adjacency matrix representation?

• Question: when is the adjacency matrix representation good?

• The adjacency matrix representation is good if the graphs are dense.
The matrix requires O(V2) bits of storage and O(V2) time for
initialization.

• If the number of edges is proportional to V2, then there is no problem
because V2 steps are required to read the edges.

• If the graph is sparse, the initialization of the matrix dominates the
running time of the algorithm as it takes takes O(V2).

40

Algorithmic and advanced Programming in Python

Downside

• The downsides of adjacency matrices are that enumerating the
outgoing edges from a vertex takes O(𝑛) time even if there aren't very
many, and the O(V2) space cost is high for sparse graphs, those with
much fewer than V2 edges. The adjacency matrix representation takes
O(V2) amount of space while it is computed. When graph has
maximum number of edges or minimum number of edges, in both
cases the required space will be same.

• Question: which other data structure could we use to represent graphs?

41

Algorithmic and advanced Programming in Python

Adjacency List

• Graph Declaration for Adjacency List

• In this representation all the vertices connected to a vertex 𝑣 are listed
on an adjacency list for that vertex 𝑣. This can be easily implemented
with linked lists. That means, for each vertex 𝑣 we use a linked list and
list nodes represents the connections between 𝑣 and other vertices to
which 𝑣 has an edge.

42

Algorithmic and advanced Programming in Python

Description

• Considering the same example as that of the adjacency matrix, the
adjacency list representation can be given as:

• Since vertex A has an edge for B and D, we have added them in the
adjacency list for A. The same is the case with other vertices as well.

43

Algorithmic and advanced Programming in Python

Corresponding code

44

Algorithmic and advanced Programming in Python

Code (follows)

45

Algorithmic and advanced Programming in Python

Code (follows)

46

Algorithmic and advanced Programming in Python

Code (follows)

47

Algorithmic and advanced Programming in Python

Code follows

48

• Question: What is the output?

Algorithmic and advanced Programming in Python

Output

49

Algorithmic and advanced Programming in Python

Disadvantages of Adjacency Lists

• Question: what are the disadvantages of Adjacency Lists ?

50

Algorithmic and advanced Programming in Python

Disadvantages of Adjacency Lists

• Question: what are the disadvantages of Adjacency Lists ?

• Using adjacency list representation we cannot perform some operations
efficiently.

• As an example, consider the case of deleting a node. In adjacency list
representation, it is not enough if we simply delete a node from the list
representation. We also need to the node in all adjacency lists. For each
node on the adjacency list of that node specifies another vertex. We need to
search other nodes linked list also for deleting it. This problem can be
solved by linking the two list nodes that correspond to a particular edge and
making the adjacency lists doubly linked. But all these extra links are risky
to process.

• Question: could you think of a data structure to address this issue?

51

Algorithmic and advanced Programming in Python

Adjacency Set, Adjancy Map

• It is very much similar to adjacency list but instead of using Linked
lists, Disjoint Sets are used.

• In line with adjacency list and sets representation, we can use use
maps for storing the edges information of the graphs.

52

Algorithmic and advanced Programming in Python

Comparison of Graph Representations

• Directed and undirected graphs are represented with the same
structures. For directed graphs, everything is the same, except that
each edge is represented just once. An edge from 𝑥 to 𝑦 is represented
by a 1 value in 𝐴𝑑𝑗[𝑥][𝑦] in the adjacency matrix, or by adding 𝑦 on 𝑥
’𝑠 adjacency list. For weighted graphs, everything is the same, except
fill the adjacency matrix with weights instead of boolean values.

53

Algorithmic and advanced Programming in Python

Graph Traversals

• To solve problems on graphs, we need a mechanism for traversing the
graphs. Graph traversal algorithms are also called 𝑔𝑟𝑎𝑝ℎ 𝑠𝑒𝑎𝑟𝑐ℎ
algorithms. Like trees traversal algorithms (Inorder, Preorder,
Postorder and Level-Order traversals), graph search algorithms can be
thought of as starting at some source vertex in a graph and "searching"
the graph by going through the edges and marking the vertices. Now,
we will discuss two such algorithms for traversing the graphs.

• Depth First Search [DFS]

• Breadth First Search [BFS]

• Question: what about cycles?

54

Algorithmic and advanced Programming in Python

Handling cycle?

• A graph can contain cycles, which may bring you to the same node
again while traversing the graph. To avoid processing of same node
again, use a boolean array which marks the node after it is processed.
While visiting the nodes in the layer of a graph, store them in a
manner such that you can traverse the corresponding child nodes in a
similar order.

55

Algorithmic and advanced Programming in Python

Depth First Search [DFS]

• Depth-first search (DFS) is a method for exploring a tree or graph. In a
DFS, you go as deep as possible down one path before backing up and
trying a different one.

• DFS algorithm works in a manner similar to preorder traversal of
the trees.

• Question: which data structure should it use.?

56

Algorithmic and advanced Programming in Python

Depth First Search [DFS] data structure

• Like preorder traversal, internally this algorithm also uses stack.

• Let us consider the following example. Suppose a person is trapped inside a
maze. To come out from that maze, the person visits each path and each
intersection (in the worst case). Let us say the person uses two colors of
paint to mark the intersections already passed. When discovering a new
intersection, it is marked grey, and he continues to go deeper.

• After reaching a “dead end” the person knows that there is no more
unexplored path from the grey intersection, which now is completed, and he
marks it with black. This “dead end” is either an intersection which has
already been marked grey or black, or simply a path that does not lead to an
intersection.

57

Algorithmic and advanced Programming in Python

Intuition

• The intersections of the maze are the vertices and the paths between
the intersections are the edges of the graph. The process of returning
from the “dead end” is called 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔. We are trying to go
away from the starting vertex into the graph as deep as possible, until
we have to backtrack to the preceding grey vertex. In DFS algorithm,
we encounter the following types of edges.

58

Algorithmic and advanced Programming in Python

DFS intuition

• For most algorithms Boolean classification, unvisited/visited is enough
(for three color implementation refer to problems section). That
means, for some problems we need to use three colors, but for our
discussion two colors are enough.

59

Algorithmic and advanced Programming in Python

DFS intuition

• Initially all vertices are marked unvisited (false). The DFS algorithm
starts at a vertex 𝑢 in the graph. By starting at vertex 𝑢 it considers the
edges from 𝑢 to other vertices. If the edge leads to an already visited
vertex, then backtrack to current vertex 𝑢. If an edge leads to an
unvisited vertex, then go to that vertex and start processing from that
vertex. That means the new vertex becomes the current vertex. Follow
this process until we reach the dead-end. At this point start 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘
𝑖𝑛𝑔. The process terminates when backtracking leads back to the start
vertex.

60

Algorithmic and advanced Programming in Python

Illustration

61

Algorithmic and advanced Programming in Python

Illustration follows

62

Algorithmic and advanced Programming in Python

Illustration follows

63

Algorithmic and advanced Programming in Python

Illustration follows

64

Algorithmic and advanced Programming in Python

Illustration follows

65

Algorithmic and advanced Programming in Python

Illustration follows

66

Algorithmic and advanced Programming in Python

Illustration follows

67

Algorithmic and advanced Programming in Python

Illustration follows

68

Algorithmic and advanced Programming in Python

Advantages/disadvantages?

• Question: any idea?

69

Algorithmic and advanced Programming in Python

Advantages/disadvantages?

• Advantages:

• Depth-first search on a binary tree generally requires less memory than
breadth-first.

• Depth-first search can be easily implemented with recursion.

• Disadvantages:

• A DFS doesn't necessarily find the shortest path to a node, while breadth-first
search does.

• Question: any idea of applications?

70

Algorithmic and advanced Programming in Python

Applications of DFS

• Topological sorting

• Finding connected components

• Finding articulation points (cut vertices) of the graph

• Finding strongly connected components

• Solving puzzles such as mazes

71

Algorithmic and advanced Programming in Python

Implementation

• See the LAB

72

Algorithmic and advanced Programming in Python

Breadth First Search [BFS]

• Breadth-first search (BFS) is a method for exploring a tree or graph. In
a BFS, you first explore all the nodes one step away, then all the nodes
two steps away, etc. Breadth-first search is like throwing a stone in the
center of a pond. The nodes you explore "ripple out" from the starting
point.

• The BFS algorithm works similar to 𝑙𝑒𝑣𝑒𝑙 − 𝑜𝑟𝑑𝑒𝑟 traversal of the
trees. Like 𝑙𝑒𝑣𝑒𝑙 − 𝑜𝑟𝑑𝑒𝑟 traversal, BFS also uses queues. In fact, 𝑙𝑒𝑣
𝑒𝑙 − 𝑜𝑟𝑑𝑒𝑟 traversal got inspired from BFS.

73

Algorithmic and advanced Programming in Python

Breadth First Search [BFS] follows

• BFS works level by level. Initially, BFS starts at a given vertex, which
is at level 0. In the first stage it visits all vertices at level 1 (that means,
vertices whose distance is 1 from the start vertex of the graph). In the
second stage, it visits all vertices at the second level. These new
vertices are the ones which are adjacent to level 1 vertices. BFS
continues this process until all the levels of the graph are completed.

• Question: any idea of the data structure?

74

Algorithmic and advanced Programming in Python

Breadth First Search [BFS]

• To make this process easy, use a queue to store the node and mark it
as 'visited' once all its neighbors (vertices that are directly connected to
it) are marked or added to the queue.

• The queue follows the First In First Out (FIFO) queuing method, and
therefore, the neighbors of the node will be visited in the order in
which they were inserted in the node i.e. the node that was inserted
first will be visited first, and so on.

• Generally 𝑞𝑢𝑒𝑢𝑒 data structure is used for storing the vertices of a
level.

75

Algorithmic and advanced Programming in Python

BFS rules

• BFS employs the following rules:

• Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a
queue.

• If no adjacent vertex is found, remove the first vertex from the queue.

• Repeat step 1 and step 2 until the queue is empty.

• As similar to DFS, assume that initially all vertices are marked 𝑢𝑛𝑣𝑖𝑠𝑖
𝑡𝑒𝑑 (𝑓𝑎𝑙𝑠𝑒). Vertices that have been processed and removed from the
queue are marked 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑡𝑟𝑢𝑒). We use a queue to represent the
visited set as it will keep the vertices in the order of when they were
first visited. As an example, let us consider the same graph as that of
the DFS example.

76

Algorithmic and advanced Programming in Python

Illustration

77

Algorithmic and advanced Programming in Python

Illustrations follows

78

Algorithmic and advanced Programming in Python

Illustrations follows

79

Algorithmic and advanced Programming in Python

Advantages/Disadvantages

• Advantages: A BFS will find the shortest path between the starting
point and any other reachable node. A depth-first search will not
necessarily find the shortest path.

• Disadvantages: A BFS on a binary tree generally requires more
memory than a DFS.

• Applications of BFS:

• Finding all connected components in a graph

• Finding all nodes within one connected component

• Finding the shortest path between two nodes

• Testing a graph for bipartiteness

80

Algorithmic and advanced Programming in Python

Implementation

• See Lab

• Question: any ideas of the difference between DFS and BFS?

81

Algorithmic and advanced Programming in Python

Comparing DFS and BFS

• Comparing BFS and DFS, the big advantage of DFS is that it has much
lower memory requirements than BFS because it's not required to store
all of the child pointers at each level. Depending on the data and what we
are looking for, either DFS or BFS can be advantageous.

• For example, in a family tree if we are looking for someone who's still
alive and if we assume that person would be at the bottom of the tree, then
DFS is a better choice. BFS would take a very long time to reach that last
level.

• The DFS algorithm finds the goal faster. Now, if we were looking for a
family member who died a very long time ago, then that person would be
closer to the top of the tree. In this case, BFS finds faster than DFS. So, the
advantages of either vary depending on the data and what we are looking
for.

82

Algorithmic and advanced Programming in Python

Comparing DFS and BFS

• DFS is related to preorder traversal of a tree. Like 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 traversal,
DFS visits each node before its children. The BFS algorithm works
similar to 𝑙𝑒𝑣𝑒𝑙 − 𝑜𝑟𝑑𝑒𝑟 traversal of the trees.

• Question: so what is better?

83

Algorithmic and advanced Programming in Python

Answer!

• If someone asks whether DFS is better or BFS is better, the answer
depends on the type of the problem that we are trying to solve.

• BFS visits each level one at a time, and if we know the solution we are
searching for is at a low depth, then BFS is good. DFS is a better
choice if the solution is at maximum depth. The below table shows the
differences between DFS and BFS in terms of their applications.

84

Algorithmic and advanced Programming in Python

Topological Sort

• Assume that we need to schedule a series of tasks, such as classes or
construction jobs, where we cannot start one task until after its prerequisites
are completed. We wish to organize the tasks into a linear order that allows
us to complete them one at a time without violating any prerequisites.

• We can model the problem using a DAG.

• The graph is directed because one task is a prerequisite of another -- the
vertices have a directed relationship. It is acyclic because a cycle would
indicate a conflicting series of prerequisites that could not be completed
without violating at least one prerequisite. The process of laying out the
vertices of a DAG in a linear order to meet the prerequisite rules is called a
topological sort.

85

Algorithmic and advanced Programming in Python

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑜𝑟𝑡

• 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑜𝑟𝑡 is an ordering of vertices in a directed acyclic graph
[DAG] in which each node comes before all nodes to which it has
outgoing edges. As an example, consider the course prerequisite
structure at universities. A directed 𝑒𝑑𝑔𝑒 (𝑣, 𝑤) indicates that course 𝑣
must be completed before course 𝑤. Topological ordering for this
example is the sequence which does not violate the prerequisite
requirement.

• Every DAG may have one or more topological orderings. Topological
sort is not possible if the graph has a cycle, since for two vertices 𝑣
and 𝑤 on the cycle, 𝑣 precedes 𝑤 and 𝑤 precedes 𝑣.

86

Algorithmic and advanced Programming in Python

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑜𝑟𝑡 property

• Topological sort has an interesting property. All pairs of consecutive
vertices in the sorted order are connected by edges; then these edges
form a directed Hamiltonian path [refer to LAB] in the DAG.

• If a Hamiltonian path exists, the topological sort order is unique. If a
topological sort does not form a Hamiltonian path, DAG can have two
or more topological orderings. In the graph below: 7, 5, 3, 11, 8, 2, 9,
10 and 3, 5, 7, 8, 11, 2, 9, 10 are both topological orderings.

87

Algorithmic and advanced Programming in Python

Implemtation

• We can implement topological sort using a queue.

• First visit all edges, counting the number of edges that lead to each
vertex (i.e., count the number of prerequisites for each vertex).
Initially, 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 is computed for all vertices, starting with the
vertices which are having indegree 0. That means consider the vertices
which do not have any prerequisite. To keep track of vertices with
indegree zero we can use a queue.

88

Algorithmic and advanced Programming in Python

Implementation intuition

• All vertices with no prerequisites (indegree 0) are placed on the queue.
We then begin processing the queue. While the queue is not empty, a
vertex 𝑣 is removed, and all edges adjacent to 𝑣 have their indegrees
decremented. A vertex is put on the queue as soon as its indegree falls
to 0. The topological ordering is the order in which the vertices
deQueue. If the queue becomes empty without printing all of the
vertices, then the graph contains a cycle (i.e., there is no possible
ordering for the tasks that does not violate some prerequisite).

89

Algorithmic and advanced Programming in Python

Implementation intuition follows

• The first problem when attempting to create a topographic sort of a
graph in any programming language is figuring out how to represent a
graph. we can chose a map with an int as a key to simplify the
implementation. Each vertex u is represented with a key in the map,
each vertex that adjacent to u—v—is stored as a slice in the map
referenced by the key u.

• To see in LAB

90

Algorithmic and advanced Programming in Python

Applications of Topological Sorting

• Representing course prerequisites

• Detecting deadlocks

• Pipeline of computing jobs

• Checking for symbolic link loop

• Evaluating formulae in spreadsheet

91

Algorithmic and advanced Programming in Python

Shortest Path Algorithms

• Shortest path algorithms are a family of algorithms designed to solve
the shortest path problem. The shortest path problem is something
most people have some intuitive familiarity with: given two points, A
and B, what is the shortest path between them? Given a graph 𝐺 = (𝑉,
𝐸) and a distinguished vertex s, we need to find the shortest path from
𝑠 to every other vertex in 𝐺. There are variations in the shortest path
algorithms which depends on the type of the input graph and are given
below.

92

Algorithmic and advanced Programming in Python

Variations of Shortest Path Algorithms

• If the edges have weights, the graph is called a weighted graph.
Sometimes these edges are bidirectional and the graph is called
undirected. Sometimes there can be even be cycles in the graph. Each
of these subtle differences are what makes one algorithm work better
than another for certain graph type.

• There are also different types of shortest path algorithms. Maybe you
need to find the shortest path between point A and B, but maybe you
need to shortest path between point A and all other points in the graph.

93

Algorithmic and advanced Programming in Python

Applications of Shortest Path Algorithms

• Shortest path algorithms have many applications. As noted earlier,
mapping software like Google or Apple maps makes use of shortest
path algorithms. They are also important for road network, operations,
and logistics research. Shortest path algorithms are also very important
for computer networks, like the Internet.

• Any software that helps you choose a route uses some form of a
shortest path algorithm. Google Maps, for instance, has you put in a
starting point and an ending point and will solve the shortest path
problem for you.

• Finding fastest way to go from one place to another

• Finding cheapest way to fly/send data from one city to another

94

Algorithmic and advanced Programming in Python

Types of Shortest Path Algorithms

• 𝑆𝑖𝑛𝑔𝑙𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: In a Single Source Shortest
Paths Problem, we are given a Graph G = (V, E), we want to find the
shortest path from a given source vertex s ∈ V to every vertex v ∈ V.

• 𝑆𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: Find the shortest path
to a given destination vertex t from every vertex v. By shift the
direction of each edge in the graph, we can shorten this problem to a
single - source problem.

95

Algorithmic and advanced Programming in Python

Types of Shortest Path Algorithms

• 𝑆𝑖𝑛𝑔𝑙𝑒 𝑝𝑎𝑖𝑟 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: Find the shortest path from u to
v for given vertices u and v. If we determine the single - source
problem with source vertex u, we clarify this problem also.
Furthermore, no algorithms for this problem are known that run
asymptotically faster than the best single - source algorithms in the
worst case.

• 𝐴𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: Find the shortest path from u to v
for every pair of vertices u and v. Running a single - source algorithm
once from each vertex can clarify this problem; but it can generally be
solved faster, and its structure is of interest in the own right.

96

Algorithmic and advanced Programming in Python

Comparison

• 𝐴𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: Find the shortest path from u to v
for every pair of vertices u and v. Running a single - source algorithm
once from each vertex can clarify this problem; but it can generally be
solved faster, and its structure is of interest in the own right.

97

Algorithmic and advanced Programming in Python

Shortest Path in Unweighted Graph

• Let 𝑠 be the input vertex from which we want to find the shortest path
to all other vertices. Unweighted graph is a special case of the
weighted shortest-path problem, with all edges a weight of 1. The
algorithm is similar to BFS and we need to use the following data
structures:

• A distance table with three columns (each row corresponds to a
vertex):
• Distance from source vertex.

• Path - contains the name of the vertex through which we get the shortest
distance.

• A queue is used to implement breadth-first search. It contains vertices
whose distance from the source node has been computed and their
adjacent vertices are to be examined.

98

Algorithmic and advanced Programming in Python

Example

• As an example, consider the following graph and its adjacency list
representation.

• Question: give the adjacency list?

99

Algorithmic and advanced Programming in Python

Adjacency list

• The adjacency list for this graph is:

• 𝑨: 𝐵 → 𝐷

• 𝑩: 𝐷 → 𝐸

• 𝑪: 𝐴 → 𝐹

• 𝑫: 𝐹 → 𝐺

• 𝑬: 𝐺

• 𝑭: −

• 𝑮: 𝐹

100

Algorithmic and advanced Programming in Python

Intuition by example path from C

101

Algorithmic and advanced Programming in Python

Example path from C

102

Algorithmic and advanced Programming in Python

Then iterate over adjacent node

103

Algorithmic and advanced Programming in Python

Output

104

Algorithmic and advanced Programming in Python

Dijkstra’s Algorithm

• A famous solution for the shortest path problem was developed by
𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎. 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎’𝑠 algorithm is a generalization of the BFS
algorithm. The regular BFS algorithm cannot solve the shortest path
problem as it cannot guarantee that the vertex at the front of the queue
is the vertex closest to source 𝑠.

• Dijkstra's algorithm makes use of breadth-first search (which is not a
single source shortest path algorithm) to solve the single-source
problem. It does place one constraint on the graph: there can be no
negative weight edges. Dijkstra's algorithm is also sometimes used to
solve the all-pairs shortest path problem by simply running it on all
vertices in V. Again, this requires all edge weights to be positive.

105

Algorithmic and advanced Programming in Python

Intuition

• Before going to code let us understand how the algorithm works. As in
unweighted shortest path algorithm, here too we use the distance table.
The algorithm works by keeping the shortest distance of vertex 𝑣 from
the source in the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 table. The value 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑣] holds the
distance from s to v. The shortest distance of the source to itself is
zero. The 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 table for all other vertices is set to 𝑚𝑎𝑡ℎ. 𝑀𝑎𝑥𝐼𝑛𝑡
64 to indicate that those vertices are not already processed.

106

Algorithmic and advanced Programming in Python

Table

107

Algorithmic and advanced Programming in Python

Algorithm

• After the algorithm finishes, the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 table will have the shortest
distance from source 𝑠 to each other vertex 𝑣.

• To simplify the understanding of 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎’𝑠 algorithm, let us assume
that the given vertices are maintained in two sets. Initially the first set
contains only the source element and the second set contains all the
remaining elements. After the 𝑘th iteration, the first set contains 𝑘
vertices which are closest to the source. These 𝑘 vertices are the ones
for which we have already computed the shortest distances from
source.

108

Algorithmic and advanced Programming in Python

Intuition with an example

• The 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎’𝑠 algorithm can be better understood through an
example, which will explain each step that is taken and how 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
is calculated. The weighted graph below has 5 vertices from 𝐴 − 𝐸.

• The value between the two vertices is known as the edge cost between
two vertices. For example, the edge cost between 𝐴 and 𝐶 is 1.
Dijkstra’s algorithm can be used to find the shortest path from source
𝐴 to the remaining vertices in the graph.

109

Algorithmic and advanced Programming in Python

Initial graph

110

Algorithmic and advanced Programming in Python

Dystra follows

111

Algorithmic and advanced Programming in Python

Dystra follows

112

Algorithmic and advanced Programming in Python

Dystra follows

113

Algorithmic and advanced Programming in Python

Dystra follows

114

Algorithmic and advanced Programming in Python

Dystra follows

115

Algorithmic and advanced Programming in Python

Performance

• In Dijkstra’s algorithm, the efficiency depends on the number of
deleteMins (𝑉 deleteMins) and updates for priority queues (𝐸 updates)
that are used. If a 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 ℎ𝑒𝑎𝑝 is used then the complexity
is O(𝐸𝑙𝑜𝑔𝑉). The term 𝐸𝑙𝑜𝑔𝑉 comes from 𝐸 updates (each update
takes 𝑙𝑜𝑔𝑉) for the standard heap. If the set used is an array then the
complexity is O(𝐸 + 𝑉2).

116

Algorithmic and advanced Programming in Python

Unweighted Shortest Path vs Dijkstra

• Difference between Unweighted Shortest Path and Dijkstra’s
Algorithm

1. To represent weights in the adjacency list, each vertex contains the weights
of the edges (in addition to their identifier).

2. Instead of ordinary queue we use priority queue [distances are the priorities]
and the vertex with the smallest distance is selected for processing.

3. The distance to a vertex is calculated by the sum of the weights of the edges
on the path from the source to that vertex.

4. We update the distances in case the newly computed distance is smaller than
the old distance which we have already computed.

117

Algorithmic and advanced Programming in Python

Disadvantages of Dijkstra’s Algorithm

• As discussed above, the major disadvantage of the algorithm is that it
does a blind search, thereby wasting time and necessary resources.

• Another disadvantage is that it cannot handle negative edges. This
leads to acyclic graphs and most often cannot obtain the right shortest
path.

• We will see other graph algorithms in LAB:

• Kruskals

• Bellman–Ford

• Hamiltonian path

118

Algorithmic and advanced Programming in Python

In Lab session

• You will play with the concepts and starts getting more and more
familiar with graph

• This can be useful for your FINAL project

• Lab is done by Remy Belmonte

119

